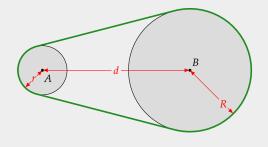
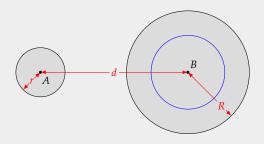
Miscellaneous Nerdery

Updated on: September 9, 2025

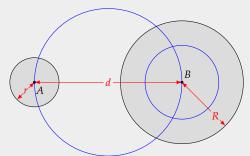


Two pulleys, centred at A and B, have radii r and R. The distance from A to B is d.



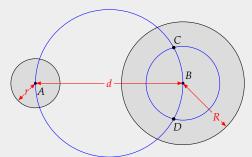
1. Construct a circle, diameter R-r, centred at B.

Two pulleys, centred at A and B, have radii r and R. The distance from A to B is d.



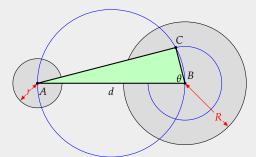
- 1. Construct a circle, diameter R-r, centred at B.
- 2. Construct a circle with diameter *AB*.

Two pulleys, centred at A and B, have radii r and R. The distance from A to B is d.



- 1. Construct a circle, diameter R-r, centred at B.
- 2. Construct a circle with diameter *AB*.
- These two circles intersect at C and D. Due to the horizontal axis of symmetry through A and B, we only need perform calculations on one half of the system.

Two pulleys, centred at A and B, have radii r and R. The distance from A to B is d.



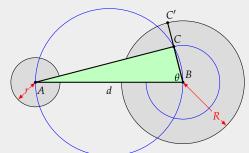
Two pulleys, centred at A and B, have radii r and R. The distance from A to B is d.

Determine the length of the belt required to go round both pulleys.

- 1. Construct a circle, diameter R-r, centred at B.
- 2. Construct a circle with diameter AB.
- These two circles intersect at C and D. Due to the horizontal axis of symmetry through A and B, we only need perform calculations on one half of the system.

4. Consider $\triangle ABC$: $\angle ACB = 90^{\circ}$ since it is an angle inscribed in a semicircle. Then:

$$AC = \sqrt{d^2 - (R - r)^2}$$
$$\theta = \sin^{-1}\left(\frac{\sqrt{d^2 - (R - r)^2}}{d}\right)$$



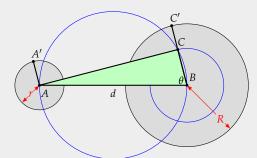
5. Extend line BC to C' on the circumference of pulley B. CC' has length r.

Two pulleys, centred at A and B, have radii r and R. The distance from A to B is d.

Determine the length of the belt required to go round both pulleys.

Consider △ABC: ∠ACB = 90° since it is an angle inscribed in a semicircle. Then:

$$AC = \sqrt{d^2 - (R - r)^2}$$
$$\theta = \sin^{-1}\left(\frac{\sqrt{d^2 - (R - r)^2}}{d}\right)$$



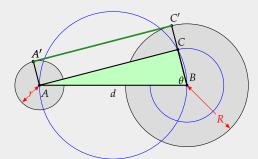
The distance from *A* to *B* is *d*.

Determine the length of

Two pulleys, centred at A and B, have radii r and R.

- 5. Extend line BC to C' on the circumference of pulley $B.\ CC'$ has length r.
- 6. Draw AA', of length r and parallel to CC', as shown.
- Consider △ABC: ∠ACB = 90° since it is an angle inscribed in a semicircle. Then:

$$AC = \sqrt{d^2 - (R - r)^2}$$
$$\theta = \sin^{-1}\left(\frac{\sqrt{d^2 - (R - r)^2}}{d}\right)$$



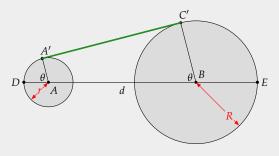
- Two pulleys, centred at A and B, have radii r and R. The distance from A to B is d.
- Determine the length of the belt required to go round both pulleys.

- 5. Extend line BC to C' on the circumference of pulley B. CC' has length r.
- 6. Draw AA', of length r and parallel to CC', as shown.
- 7. Draw A'C': A'C'CA is a rectangle so

$$A'C' = AC = \sqrt{d^2 - (R - r)^2}$$

4. Consider $\triangle ABC$: $\angle ACB = 90^{\circ}$ since it is an angle inscribed in a semicircle. Then:

$$AC = \sqrt{d^2 - (R - r)^2}$$
$$\theta = \sin^{-1}\left(\frac{\sqrt{d^2 - (R - r)^2}}{d}\right)$$



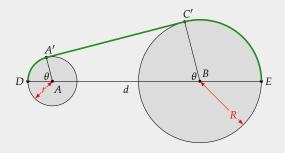
Two pulleys, centred at A and B, have radii r and R. The distance from A to B is d.

Determine the length of the belt required to go round both pulleys.

- 5. Extend line BC to C' on the circumference of pulley B. CC' has length r.
- 6. Draw AA', of length r and parallel to CC', as shown.
- 7. Draw A'C': A'C'CA is a rectangle so

$$A'C' = AC = \sqrt{d^2 - (R - r)^2}$$

8. A'C' is the (top) part of the belt that is tangential to the pulleys at A' and C'. We now need to find the arc-lengths from D to A' and from C' to E.



Two pulleys, centred at A and B, have radii r and R. The distance from A to B is d.

Determine the length of the belt required to go round both pulleys.

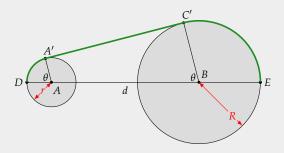
- 5. Extend line BC to C' on the circumference of pulley B. CC' has length r.
- 6. Draw AA', of length r and parallel to CC', as shown.
- 7. Draw A'C': A'C'CA is a rectangle so

$$A'C' = AC = \sqrt{d^2 - (R - r)^2}$$

8. A'C' is the (top) part of the belt that is tangential to the pulleys at A' and C'. We now need to find the arc-lengths from D to A' and from C' to E.

9. The angles $(\theta$ and $\pi - \theta)$ that these arcs subtend at the pulley centres, with the radius of each pulley, are used to determine the arc-lengths $(\theta$ in radians):

$$DA' = r\theta$$
 and $C'D = R(\pi - \theta)$



Two pulleys, centred at A and B, have radii r and R. The distance from A to B is d.

Determine the length of the belt required to go round both pulleys.

10. Belt-length:

=
$$2 (DA' + A'C' + C'E)$$

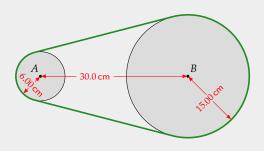
= $2 (r\theta + \sqrt{d^2 - (R - r)^2} + R(\pi - \theta))$

where

$$\theta = \sin^{-1}\left(\frac{\sqrt{d^2 - (R - r)^2}}{d}\right)$$

- 8. A'C' is the (top) part of the belt that is tangential to the pulleys at A' and C'. We now need to find the arc-lengths from D to A' and from C' to E.
- 9. The angles $(\theta$ and $\pi-\theta)$ that these arcs subtend at the pulley centres, with the radius of each pulley, are used to determine the arc-lengths $(\theta$ in radians):

$$D\!A' = r \theta$$
 and $C'\!D = R(\pi - \theta)$



Two pulleys, centred at A and B, have radii r and R. The distance from A to B is d.

Determine the length of the belt required to go round both pulleys.

Example:

$$\theta = \sin^{-1}\left(\frac{\sqrt{d^2 - (R - r)^2}}{d}\right) = \sin^{-1}\left(\frac{\sqrt{6.00^2 - 1.50^2}}{6.00}\right) = 1.3181 \text{ (radians)}$$

$$\text{B-L} = 2\left(6.00 \times 1.3181 + \sqrt{6.00^2 - 1.50^2} + 15.00 \times (\pi - 1.3181)\right) = 82.141$$

The belt length is 82.1 cm.